Fetches univariate or bivariate data for a given source, year, NUTS level, and selected filters.
Usage
mi_data(
x_source,
y_source = NULL,
year,
level,
x_filters = list(),
y_filters = NULL,
limit = 2500
)Arguments
- x_source
A
characterstring specifying the source name for the x variable.- y_source
(Optional) A
characterstring specifying the source name for the y variable.- year
A
characterorintegerspecifying the year.- level
A
characterstring specifying the NUTS level ("0", "1", "2", or "3").- x_filters
A
named listwhere the names are the filter fields for the x variable and the values are the selected values for those fields. Default is an empty list. To find out which filters to use, usemi_source_filterswith the desiredsource_name.- y_filters
(Optional) A
named listwhere the names are the filter fields for the y variable and the values are the selected values for those fields. Default isNULL. To find out which filters to use, usemi_source_filterswith the desiredsource_name.- limit
An
integerspecifying the maximum number of results to return. Default is 2500. This default should be enough for most uses, as it is well above the number of NUTS 3 regions in the EU. The maximum limited by the API is 10000.
Value
A tibble with the following columns:
geo: code for the (NUTS) region at the requested level.geo_name: name of the (NUTS) region at the requested level.geo_source: source (type) of the spatial units at the requested level.geo_year: year of the (NUTS) region at the requested level.x_year: The year of the predictor variable (X), included in bivariate requests.y_year(optional): The year of the outcome variable (Y), included in bivariate requests (only included wheny_sourceis provided).x: the value of the univariate variable.y(optional): the value of the y variable (only included wheny_sourceis provided).
Examples
# \donttest{
# Univariate example
mi_data(
x_source = "TGS00010",
year = 2020,
level = "2",
x_filters = list(isced11 = "TOTAL", sex = "F")
)
#> # A tibble: 334 × 6
#> geo geo_name geo_source geo_year x_year x
#> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 AL01 Veri NUTS 2021 2020 NA
#> 2 AL02 Qender NUTS 2021 2020 NA
#> 3 AL03 Jug NUTS 2021 2020 NA
#> 4 AT11 Burgenland NUTS 2021 2020 NA
#> 5 AT12 Niederösterreich NUTS 2021 2020 4
#> 6 AT13 Wien NUTS 2021 2020 10
#> 7 AT21 Kärnten NUTS 2021 2020 5
#> 8 AT22 Steiermark NUTS 2021 2020 4.4
#> 9 AT31 Oberösterreich NUTS 2021 2020 3.7
#> 10 AT32 Salzburg NUTS 2021 2020 3
#> # ℹ 324 more rows
# Bivariate example
mi_data(
x_source = "TGS00010",
y_source = "DEMO_R_MLIFEXP",
year = 2020,
level = "2",
x_filters = list(isced11 = "TOTAL", sex = "F"),
y_filters = list(age = "Y2", sex = "F")
)
#> # A tibble: 332 × 8
#> geo geo_name geo_source geo_year x_year y_year x y
#> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 AL01 Veri NUTS 2018 2020 2020 NA 78.3
#> 2 AL02 Qender NUTS 2018 2020 2020 NA 80.4
#> 3 AL03 Jug NUTS 2018 2020 2020 NA 76.9
#> 4 AT11 Burgenland NUTS 2018 2020 2020 NA 81.8
#> 5 AT12 Niederösterreich NUTS 2018 2020 2020 4 81.8
#> 6 AT13 Wien NUTS 2018 2020 2020 10 80.9
#> 7 AT21 Kärnten NUTS 2018 2020 2020 5 82.2
#> 8 AT22 Steiermark NUTS 2018 2020 2020 4.4 81.9
#> 9 AT31 Oberösterreich NUTS 2018 2020 2020 3.7 82.3
#> 10 AT32 Salzburg NUTS 2018 2020 2020 3 82.7
#> # ℹ 322 more rows
# }